Intrusion detection in computer networks by a modular ensemble of one-class classifiers
نویسندگان
چکیده
Since the early days of research on Intrusion Detection, anomaly-based approaches have been proposed to detect intrusion attempts. Attacks are detected as anomalies when compared to a model of normal (legitimate) events. Anomaly-based approaches typically produce a relatively large number of false alarms compared to signature-based IDS. However, anomaly-based IDS are able to detect never-before-seen attacks. As new types of attacks are generated at an increasing pace and the process of signature generation is slow, it turns out that signature-based IDS can be easily evaded by new attacks. The ability of anomaly-based IDS to detect attacks never observed in the wild has stirred up a renewed interest in anomaly detection. In particular, recent work focused on unsupervised or unlabeled anomaly detection, due to the fact that it is very hard and expensive to obtain a labeled dataset containing only pure normal events. The unlabeled approaches proposed so far for network IDS focused on modeling the normal network traffic considered as a whole. As network traffic related to different protocols or services exhibits different characteristics, this paper proposes an unlabeled Network Anomaly IDS based on a modular Multiple Classifier System (MCS). Each module is designed to model a particular group of similar protocols or network services. The use of a modular MCS allows the designer to choose a different model and decision threshold for different (groups of) network services. This also allows the designer to tune the false alarm rate and detection rate produced by each module to optimize the overall performance of the ensemble. Experimental results on the KDD-Cup 1999 dataset show that the proposed anomaly IDS achieves high attack detection rate and low false alarm rate at the same time.
منابع مشابه
Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملتولید خودکار الگوهای نفوذ جدید با استفاده از طبقهبندهای تک کلاسی و روشهای یادگیری استقرایی
In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...
متن کاملA New Intrusion Detection System to deal with Black Hole Attacks in Mobile Ad Hoc Networks
By extending wireless networks and because of their different nature, some attacks appear in these networks which did not exist in wired networks. Security is a serious challenge for actual implementation in wireless networks. Due to lack of the fixed infrastructure and also because of security holes in routing protocols in mobile ad hoc networks, these networks are not protected against attack...
متن کاملA Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Fusion
دوره 9 شماره
صفحات -
تاریخ انتشار 2008